skip to main content


Search for: All records

Creators/Authors contains: "Bouman, Katherine L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 4, 2024
  2. An object’s interior material properties, while invisible to the human eye, determine motion observed on its surface. We propose an approach that esti- mates heterogeneous material properties of an object directly from a monoc- ular video of its surface vibrations. Specifically, we estimate Young’s modulus and density throughout a 3D object with known geometry. Knowledge of how these values change across the object is useful for characterizing defects and simulating how the object will interact with different environments. Traditional non-destructive testing approaches, which generally estimate homogenized material properties or the presence of defects, are expensive and use specialized instruments. We propose an approach that leverages monocular video to (1) measure an object’s sub-pixel motion and decompose this motion into image-space modes, and (2) directly infer spatially-varying Young’s modulus and density values from the observed image-space modes. On both simulated and real videos, we demonstrate that our approach is able to image material properties simply by analyzing surface motion. In particular, our method allows us to identify unseen defects on a 2D drum head from real, high-speed video. 
    more » « less
  3. Measurements from the Event Horizon Telescope enabled the visualization of light emission around a black hole for the first time. So far, these measurements have been used to recover a 2D image under the assumption that the emission field is static over the period of acquisition. In this work, we propose BH-NeRF, a novel tomography approach that leverages gravitational lensing to recover the continuous 3D emission field near a black hole. Compared to other 3D reconstruction or tomography settings, this task poses two significant challenges: first, rays near black holes follow curved paths dictated by general relativity, and second, we only observe measurements from a single viewpoint. Our method captures the unknown emission field using a continuous volumetric function parameterized by a coordinate-based neural network, and uses knowledge of Keplerian orbital dynamics to establish correspondence between 3D points over time. Together, these enable BH-NeRF to recover accurate 3D emission fields, even in challenging situations with sparse measurements and uncertain orbital dynamics. This work takes the first steps in showing how future measurements from the Event Horizon Telescope could be used to recover evolving 3D emission around the supermassive black hole in our Galactic center. 
    more » « less
  4. Abstract

    Inference is crucial in modern astronomical research, where hidden astrophysical features and patterns are often estimated from indirect and noisy measurements. Inferring the posterior of hidden features, conditioned on the observed measurements, is essential for understanding the uncertainty of results and downstream scientific interpretations. Traditional approaches for posterior estimation include sampling-based methods and variational inference (VI). However, sampling-based methods are typically slow for high-dimensional inverse problems, while VI often lacks estimation accuracy. In this paper, we proposeα-deep probabilistic inference, a deep learning framework that first learns an approximate posterior usingα-divergence VI paired with a generative neural network, and then produces more accurate posterior samples through importance reweighting of the network samples. It inherits strengths from both sampling and VI methods: it is fast, accurate, and more scalable to high-dimensional problems than conventional sampling-based approaches. We apply our approach to two high-impact astronomical inference problems using real data: exoplanet astrometry and black hole feature extraction.

     
    more » « less
  5. Typically, inversion algorithms assume that a forward model, which relates a source to its resulting measurements, is known and fixed. Using collected indirect measurements and the forward model, the goal becomes to recover the source. When the forward model is unknown, or imperfect, artifacts due to model mismatch occur in the recovery of the source. In this paper, we study the problem of blind inversion: solving an inverse problem with unknown or imperfect knowledge of the forward model parameters. We propose DeepGEM, a variational Expectation-Maximization (EM) framework that can be used to solve for the unknown parameters of the forward model in an unsupervised manner. DeepGEM makes use of a normalizing flow generative network to efficiently capture complex posterior distributions, which leads to more accurate evaluation of the source's posterior distribution used in EM. We showcase the effectiveness of our DeepGEM approach by achieving strong performance on the challenging problem of blind seismic tomography, where we significantly outperform the standard method used in seismology. We also demonstrate the generality of DeepGEM by applying it to a simple case of blind deconvolution. 
    more » « less
  6. Accelerated MRI shortens acquisition time by subsampling in the measurement k-space. Recovering a high-fidelity anatomical image from subsampled measurements requires close cooperation between two components: (1) a sampler that chooses the subsampling pattern and (2) a reconstructor that recovers images from incomplete measurements. In this paper, we leverage the sequential nature of MRI measurements, and propose a fully differentiable framework that jointly learns a sequential sampling policy simultaneously with a reconstruction strategy. This co-designed framework is able to adapt during acquisition in order to capture the most informative measurements for a particular target (see the figure above). Experimental results on the fastMRI knee dataset demonstrate that the proposed approach successfully utilizes intermediate information during the sampling process to boost reconstruction performance. In particular, our proposed method outperforms the current state-of-the-art learned k-space sampling baseline on over 96% of test samples. We also investigate the individual and collective benefits of the sequential sampling and co-design strategies. 
    more » « less
  7. Computational image reconstruction algorithms generally produce a single image without any measure of uncertainty or confidence. Regularized Maximum Likelihood (RML) and feed-forward deep learning approaches for inverse problems typically focus on recovering a point estimate. This is a serious limitation when working with under-determined imaging systems, where it is conceivable that multiple image modes would be consistent with the measured data. Characterizing the space of probable images that explain the observational data is therefore crucial. In this paper, we propose a variational deep probabilistic imaging approach to quantify reconstruction uncertainty. Deep Probabilistic Imaging (DPI) employs an untrained deep generative model to estimate a posterior distribution of an unobserved image. This approach does not require any training data; instead, it optimizes the weights of a neural network to generate image samples that fit a particular measurement dataset. Once the network weights have been learned, the posterior distribution can be efficiently sampled. We demonstrate this approach in the context of interferometric radio imaging, which is used for black hole imaging with the Event Horizon Telescope, and compressed sensing Magnetic Resonance Imaging (MRI). 
    more » « less